HOME MRI PHYSICS SEQUENCES APPLICATIONS FUNCTIONAL MRI INTERVENTIONAL MRI SPECTROSCOPY TRACTOGRAPHY MRI SUITES VIEWERS ABBREVIATIONS
 
MRI
BRAIN STEM
EEG
NCS/EMG
EVOKED POTENTIALS
MOTOR EP
D-Wave vs. MEP

Information box
The main purpose of this site is to extend the intraoperative monitoring to include the neurophysiologic parameters with intraoperative navigation guided with Skyra 3 tesla MRI and other radiologic facilities to merge the morphologic and histochemical data in concordance with the functional data.
CNS Clinic
Located in Jordan Amman near Al-Shmaisani hospital, where all ambulatory activity is going on.
Contact: Tel: +96265677695, +96265677694.

Skyra running
A magnetom Skyra 3 tesla MRI with all clinical applications started to run in our hospital in 28-October-2013.
Shmaisani hospital
The hospital where the project is located and running diagnostic and surgical activity.


Spin Echo family of sequences:
- Spin Echo (SE) - Single, Double, and Multi Echo (up to 32 echoes); Inversion Recovery (IR)
- 2D / 3D Turbo Spin Echo (TSE) - Restore technique for shorter TR times while maintaining excellent T2 contrast; TurboIR: Inversion Recovery for STIR, DarkFluid T1 and T2, TrueIR; Echo Sharing for dual-contrast TSE
- 2D / 3D HASTE (Half-Fourier Acquisition with Single Shot Turbo Spin Echo) - Inversion Recovery for STIR and DarkFluid contrast
- SPACE for 3D imaging with high isotropic resolution with T1, T2, PD, and DarkFluid Contrast

Gradient Echo family of sequences:
- 2D / 3D FLASH (spoiled GRE) - dual echo for in- / opposed phase imaging 3D VIBE (Volume Interpolated Breathhold Examination) - quick fat saturation; double echo for in-phase / opposed phase 3D imaging; DynaVIBE: Inline 3D elastic motion correction for multi phase data sets of the abdomen; Inline Breast Evaluation
- 2D / 3D MEDIC (Multi Echo Data Image Combination) for high resolution T2 weighted orthopedic imaging and excellent contrast
- 2D / 3D TurboFLASH - 3D MPRAGE; single shot T1 weighted imaging e.g. for abdominal imaging during free breathing
- 3D GRE for field mapping
- 2D / 3D FISP (Fast Imaging with Steady State Precession)
- 2D / 3D PSIF - PSIF Diffusion
- Echo Planar Imaging (EPI) - diffusion-weighted; single shot SE and FID e.g. for BOLD imaging and Perfusion-weighted imaging; 2D / 3D Segmented EPI (SE and FID)
- ce-MRA sequence with Inline subtraction and Inline MIP
- 2D / 3D Time-of-Flight (ToF) Angiography - single slab and multi slab; triggered and segmented
- 2D / 3D Phase Contrast Angiography •
- syngo BEAT Tool - TrueFISP segmented; 2D FLASH segmented;
- Magnetization-prepared TrueFISP (IR, SR, FS); IR TI scout; Retrogating

 

Pulse Sequence

A pulse sequence is a preselected set of defined RF and gradient pulses, usually repeated many times during a scan, wherein the time interval between pulses and the amplitude and shape of the gradient waveforms will control NMR signal reception and affect the characteristics of the MR images. Pulse sequences are computer programs that control all hardware aspects of the MRI measurement process.
Usual to describe pulse sequences, is to list the repetition time (TR), the echo time (TE), if using inversion recovery, the inversion time (TI) with all times given in milliseconds, and in case of a gradient echo sequence, the flip angle. For example, 3000/30/1000 would indicate an inversion recovery pulse sequence with TR of 3000 msec., TE of 30 msec., and TI of 1000 msec.
Specific pulse sequence weightings are dependent on the field strength, the manufacturer and the pathology.

 

Basic Pulse Sequence Diagram

 

 
   

 

Spin Echo Sequence
1. Dual Echo Sequence
2. Modified Spin Echo
3. Multi Echo Multiplanar
4. Partial Saturation Spin Echo
5. Variable Echo Multiplanar
Fast Spin Echo
1. Carr Purcell Sequence
2. Carr Purcell Meiboom Gill Sequence
3. Double Fast Spin Echo
4. Double Turbo Spin Echo
5. Dual Echo Fast Acquisition Interleaved Spin Echo
6. Half Fourier Acquisition Single Shot Turbo Spin Echo
7. Multiple Echo Single Shot
8. Rapid Acquisition with Refocused Echoes
9. Turbo Spin Echo
10.Ultrashort Turbo Spin Echo
Inversion Recovery Sequence
1. Flow Sensitive Alternating Inversion Recovery
2. Fluid Attenuation Inversion Recovery
3. Inversion Recovery Spin Echo
4. Short T1 Inversion Recovery
5. Turbo Inversion Recovery

 

Spin Echo Sequence

 

(SE) The most common pulse sequence used in MR imaging is based of the detection of a spin or Hahn echo. It uses 90° radio frequency pulses to excite the magnetization and one or more 180° pulses to refocus the spins to generate signal echoes named spin echoes (SE).
In the pulse sequence timing diagram, the simplest form of a spin echo sequence is illustrated.
The 90° excitation pulse rotates the longitudinal magnetization (Mz) into the xy-plane and the dephasing of the transverse magnetization (Mxy) starts.
The following application of a 180° refocusing pulse (rotates the magnetization in the x-plane) generates signal echoes. The purpose of the 180° pulse is to rephase the spins, causing them to regain coherence and thereby to recover transverse magnetization, producing a spin echo.
The recovery of the z-magnetization occurs with the T1 relaxation time and typically at a much slower rate than the T2-decay, because in general T1 is greater than T2 for living tissues and is in the range of 100–2000 ms.
The SE pulse sequence was devised in the early days of NMR days by Carr and Purcell and exists now in many forms: the multi echo pulse sequence using single or multislice acquisition, the fast spin echo (FSE/TSE) pulse sequence, echo planar imaging (EPI) pulse sequence and the gradient and spin echo (GRASE) pulse sequence;; all are basically spin echo sequences.
In the simplest form of SE imaging, the pulse sequence has to be repeated as many times as the image has lines.
Contrast values:
PD weighted: Short TE (20 ms) and long TR.
T1 weighted: Short TE (10-20 ms) and short TR (300-600 ms)
T2 weighted: Long TE (greater than 60 ms) and long TR (greater than 1600 ms)
With spin echo imaging no T2* occurs, caused by the 180° refocusing pulse. For this reason, spin echo sequences are more robust against e.g., susceptibility artifacts than gradient echo sequences.

 

Dual Echo Sequence
(DE - dual / double echo) Dual echo sequences include images with different weightings and / or echo times and are used to obtain both, proton density and T2 weighted images or in phase and out of phase gradient echo images, simultaneously without increasing the measurement time.

Modified Spin Echo
(MSE) A spin echo technique with a flip angle over 90°.
See Spin Echo Sequence and Fast Spin Echo

Multi Echo Multiplanar
(MEMP) Sequence with a multislice and multi echo acquisition in one TR. See also Multi Echo Imaging, Multiple Echo Imaging and Fast Spin Echo.

Partial Saturation Spin Echo
(PSSE) Partial saturation sequence in which the signal is detected as a spin echo. Even though a spin echo is used, there will not necessarily be a significant contribution of the T2 relaxation time to image contrast, unless the echo time, TE, is on the order of or longer than T2.

Variable Echo Multiplanar
(VEMP) MR imaging spin echo pulse sequence in which signals for multiple variable echoes are collected.

 
Fast Spin Echo FSE or TSE

 

(FSE) In the pulse sequence timing diagram, a fast spin echo sequence with an echo train length of 3 is illustrated. This sequence is characterized by a series of rapidly applied 180° rephasing pulses and multiple echoes, changing the phase encoding gradient for each echo.
The echo time TE may vary from echo to echo in the echo train. The echoes in the center of the K-space (in the case of linear k-space acquisition) mainly produce the type of image contrast, whereas the periphery of K-space determines the spatial resolution. For example, in the middle of K-space the late echoes of T2 weighted images are encoded. T1 or PD contrast is produced from the early echoes.
The benefit of this technique is that the scan duration with, e.g. a turbo spin echo turbo factor / echo train length of 9, is one ninth of the time. In T1 weighted and proton density weighted sequences, there is a limit to how large the ETL can be (e.g. a usual ETL for T1 weighted images is between 3 and 7). The use of large echo train lengths with short TE results in blurring and loss of contrast. For this reason, T2 weighted imaging profits most from this technique.
In T2 weighted FSE images, both water and fat are hyperintense. This is because the succession of 180° RF pulses reduces the spin spin interactions in fat and increases its T2 decay time. Fast spin echo (FSE) sequences have replaced conventional T2 weighted spin echo sequences for most clinical applications. Fast spin echo allows reduced acquisition times and enables T2 weighted breath hold imaging, e.g. for applications in the upper abdomen.
In case of the acquisition of 2 echoes this type of a sequence is named double fast spin echo / dual echo sequence, the first echo is usually density and the second echo is T2 weighted image. Fast spin echo images are more T2 weighted, which makes it difficult to obtain true proton density weighted images. For dual echo imaging with density weighting, the TR should be kept between 2000 - 2400 msec with a short ETL.
Other terms for this technique are:
Turbo Spin Echo
Rapid Imaging Spin Echo,
Rapid Spin Echo,
Rapid Acquisition Spin Echo,
Rapid Acquisition with Refocused Echoes

Advantages of TSE
With TSE, the scan time is decreased (due to faster scanning) and the SNR is maintained because there are still 256 phase-encoding steps. Motion artifacts will be less severe and this technique is better able to cope with poorly shimmed magnetic fields than conventional spin echo.

Turbo Spin Echo Sequence with three echoes 

 

Carr Purcell Sequence
(CPS) Sequence of a 90° RF pulse followed by repeated 180° RF pulses to produce a train of spin echoes; is useful for measuring T2.

Carr Purcell Meiboom Gill Sequence
(CPMG) This type of spin echo pulse sequence consisting of a 90° radio frequency pulse followed by an echo train induced by successive 180° pulses and is useful for measuring T2 weighted images. It is a modification of the Carr-Purcell RF pulse sequence, with 90° phase shift in the rotating frame of reference between the 90° pulse and the subsequent 180° pulses in order to reduce accumulating effects of imperfections in the 180° pulses. Suppression of effects of pulse error accumulation can alternatively be achieved by switching phases of the 180° pulses by 180°.

Double Fast Spin Echo
(DFSE) Simultaneously acquired T2 and density weighted TE in FSE echo images.

Double Turbo Spin Echo
(DTSE / DE TSE) Simultaneously acquired T2 and density weighted echoes in a TSE sequence.

Dual Echo Fast Acquisition Interleaved Spin Echo
(DEFAISE) Simultaneously acquired T2 and density weighted echoes in a FSE sequence.

Half Fourier Acquisition Single Shot Turbo Spin Echo
(HASTE) A pulse sequence with data acquisition after an initial preparation pulse for contrast enhancement with the use of a very long echo train (Single shot TSE), whereat each echo is individually phase encoded. This technique is a heavily T2 weighted, high speed sequence with partial Fourier technique, a great sensitivity for fluid detection and a fast acquisition time of about 1 sec per slice. This advantage makes it possible for using breath-hold with excellent motionless MRI, e.g. used for liver and lung imaging.
See also Segmented HASTE.

Multiple Echo Single Shot
(MESS) See Multiple Echo Imaging, Single Shot Technique and Ultrafast Gradient Echo Sequence.

Rapid Acquisition with Refocused Echoes
(RARE) If the image lines from multiple echoes are used for the same image, this results in the RARE pulse sequence. The sequence is similar to fast spin echo.

Turbo Spin Echo
(TSE) A pulse sequence characterized by a series of rapidly applied 180° rephasing pulses and multiple echoes.

Ultrashort Turbo Spin Echo
(UTSE) The ultrashort turbo spin echo (TSE / FSE) sequence is a technique with extremely short echo spacing, resulting in shorter scan times. This is an advantage in areas where motion is a problem, for example dynamic or abdominal imaging. The shorter scan time and echo spacing are achieved by using a higher TSE factor and an increased data sampling rate.
Disadvantages are the decrease in SNR (caused through the increase of the bandwidth) and artifacts if minimum echo spacing is used (incomplete dephasing of the 180° pulse FID).

 
Inversion Recovery Sequence

 
Inversion recovery is usually a variant of a SE sequence in that it begins with a 180º inverting pulse. This inverts the longitudinal magnetization vector through 180º. When the inverting pulse is removed, the magnetization vector begins to relax back to B0.

A 90º excitation pulse is then applied after a time from the 180º inverting pulse known as the TI (time to inversion). The contrast of the resultant image depends primarily on the length of the TI as well as the TR and TE. The contrast in the image primarily depends on the magnitude of the longitudinal magnetization (as in spin echo) following the chosen delay time TI.

(IR) The inversion recovery pulse sequence produces signals, which represent the longitudinal magnetization existing after the application of a 180° radio frequency pulse that rotates the magnetization Mz into the negative plane. After an inversion time (TI - time between the starting 180° pulse and the following 90° pulse), a further 90° RF pulse tilts some or all of the z-magnetization into the xy-plane, where the signal is usually rephased with a 180° pulse as in the spin echo sequence. During the initial time period, various tissues relax with their intrinsic T1 relaxation time.
In the pulse sequence timing diagram, the basic inversion recovery sequence is illustrated. The 180° inversion pulse is attached prior to the 90° excitation pulse of a spin echo acquisition. See also the Pulse Sequence Timing Diagram. There you will find a description of the components.
The inversion recovery sequence has the advantage, that it can provide very strong contrast between tissues having different T1 relaxation times or to suppress tissues like fluid or fat. But the disadvantage is, that the additional inversion radio frequency RF pulse makes this sequence less time efficient than the other pulse sequences.

Contrast values:
PD weighted: TE: 10-20 ms, TR: 2000 ms, TI: 1800 ms
T1 weighted: TE: 10-20 ms, TR: 2000 ms, TI: 400-800 ms
T2 weighted: TE: 70 ms, TR: 2000 ms, TI: 400-800 ms

See also Inversion Recovery, Short T1 Inversion Recovery, Fluid Attenuation Inversion Recovery, and Acronyms for 'Inversion Recovery Sequence' from different manufacturers.

Uses of Inversion Recovery Sequence
Contrast is based on T1 recovery curves following the 180º inversion pulse. Inversion recovery is used to produce heavily T1 weighted images to demonstrate anatomy. The 180º inverting pulse can produce a large contrast difference between fat and water because full saturation of the fat or water vectors can be achieved by utilizing the appropriate TI.

 

Flow Sensitive Alternating Inversion Recovery
(FAIR) In this sequence 2 inversion recovery images are acquired, one with a nonselective and the other with a slice selective inversion pulse. The z-magnetization in the first sequence is independent of flow. Inflowing spins give z-magnetization from second pulse. A major signal loss in FAIR is the T1 relaxation of tagged blood in transit to the imaging slice. Sharper edges of the inversion pulse give narrow spacing between the inversion edge and the 1st slice because reduced transit time gives lower T1 relaxation induced signal loss. The difference of the images in a consequence contains information proportional to flow (blood partition coefficient). Standard adiabatic inversion RF pulse does not have good slice-profile, because of power/SAR limitation. A c-shaped frequency offset corrected inversion (FOCI) RF pulse can help to increase the signal.
Perfusion imaging, e.g. myocardial, using tissue water as endogenous contrast is suggested.

Fluid Attenuation Inversion Recovery
(FLAIR) Fluid attenuation inversion recovery is a special inversion recovery sequence with long TI to remove the effects of fluid from the resulting images. The TI time of the FLAIR pulse sequence is adjusted to the relaxation time of the component that should be suppressed. For fluid suppression the inversion time (long TI) is set to the zero crossing point of fluid, resulting in the signal being 'erased'.
Lesions that are normally covered by bright fluid signals using conventional T2 contrast are made visible by the dark fluid technique FLAIR is an important technique for the differentiation of brain and spine lesions.

Short T1 Inversion Recovery
(STIR) Also called Short Tau (t) (inversion time) Inversion Recovery. STIR is a fat suppression technique with an inversion time TI = T1 ln2 where the signal of fat is zero (T1 is the spin lattice relaxation time of the component that should be suppressed). To distinguish two tissue components with this technique, the T1 values must be different. Fluid Attenuation Inversion Recovery (FLAIR) is a similar technique to suppress water.
Inversion recovery doubles the distance spins will recover, allowing more time for T1 differences. A 180° preparation pulse inverts the net magnetization to the negative longitudinal magnetization prior to the 90° excitation pulse. This specialized application of the inversion recovery sequence set the inversion time (TI) of the sequence at 0.69 times the T1 of fat. The T1 of fat at 1.5 Tesla is approximately 250 with a null point of 170 ms while at 0.5 Tesla its 215 with a 148 ms null point. At the moment of excitation, about 120 to 170 ms after the 180° inversion pulse (depending of the magnetic field) the magnetization of the fat signal has just risen to zero from its original, negative, value and no fat signal is available to be flipped into the transverse plane.
When deciding on the optimal T1 time, factors to be considered include not only the main field strength, but also the tissue to be suppressed and the anatomy. In comparison to a conventional spin echo where tissues with a short T1 are bright due to faster recovery, fat signal is reversed or darkened. Because body fluids have both a long T1 and a long T2, it is evident that STIR offers the possibility of extremely sensitive detection of body fluid. This is of course, only true for stationary fluid such as edema, as the MRI signal of flowing fluids is governed by other factors.

No Fat Vector when the 900 is applied

   

Inversion Recovery Spin Echo
(IRSE) Form of inversion recovery imaging in which the signal is detected as a spin echo. For TE short compared to the T2 relaxation time, there will be only a small effect of T2 differences on image intensities; for longer TE's, the effect of T2 may be significant.

Turbo Inversion Recovery
( TIR / TIRM / IR-TSE - Inversion Recovery Turbo Spin Echo / FIR - Fast Inversion Recovery)
A turbo / fast spin echo sequence with long TI for fluid suppression (FLAIR) or with short TI for fat suppression (STIR). This sequence allows for a true inversion recovery display that shows the arithmetic sign of the signal.
TIRM means a turboIR with a magnitude display.

 
Gradient Echo Sequence

 
(GRE - sequence) A gradient echo is generated by using a pair of bipolar gradient pulses. In the pulse sequence timing diagram, the basic gradient echo sequence is illustrated. There is no refocusing 180° pulse and the data are sampled during a gradient echo, which is achieved by dephasing the spins with a negatively pulsed gradient before they are rephased by an opposite gradient with opposite polarity to generate the echo.
See also the Pulse Sequence Timing Diagram. There you will find a description of the components.
The excitation pulse is termed the alpha pulse a. It tilts the magnetization by a flip angle a, which is typically between 0° and 90°. With a small flip angle there is a reduction in the value of transverse magnetization that will affect subsequent RF pulses. The flip angle can also be slowly increased during data acquisition (variable flip angle: tilt optimized nonsaturation excitation). The data are not acquired in a steady state, where z-magnetization recovery and destruction by ad-pulses are balanced. However, the z-magnetization is used up by tilting a little more of the remaining z-magnetization into the xy-plane for each acquired imaging line.
Gradient echo imaging is typically accomplished by examining the FID, whereas the read gradient is turned on for localization of the signal in the readout direction. T2* is the characteristic decay time constant associated with the FID. The contrast and signal generated by a gradient echo depend on the size of the longitudinal magnetization and the flip angle. When a = 90° the sequence is identical to the so-called partial saturation or saturation recovery pulse sequence. In standard GRE imaging, this basic pulse sequence is repeated as many times as image lines have to be acquired. Additional gradients or radio frequency pulses are introduced with the aim to spoil to refocus the xy-magnetization at the moment when the spin system is subject to the next a pulse.
As a result of the short repetition time, the z-magnetization cannot fully recover and after a few initial a pulses there is an equilibrium established between z-magnetization recovery and z-magnetization reduction due to the a pulses.
Gradient echoes have a lower SAR, are more sensitive to field inhomogeneities and have a reduced crosstalk, so that a small or no slice gap can be used. In or out of phase imaging depending on the selected TE (and field strength of the magnet) is possible. As the flip angle is decreased, T1 weighting can be maintained by reducing the TR. T2* weighting can be minimized by keeping the TE as short as possible, but pure T2 weighting is not possible. By using a reduced flip angle, some of the magnetization value remains longitudinal (less time needed to achieve full recovery) and for a certain T1 and TR, there exist one flip angle that will give the most signal, known as the "Ernst angle".
Contrast values:
PD weighted: Small flip angle (no T1), long TR (no T1) and short TE (no T2*)
T1 weighted: Large flip angle (70°), short TR (less than 50ms) and short TE
T2* weighted: Small flip angle, some longer TR (100 ms) and long TE (20 ms)

Classification of GRE sequences can be made into four categories:
T1 weighted or incoherent/(RF or gradient) spoiled GRE sequences ( FLASH)
T1/T2* weighted or coherent//refocused GRE sequences
T2 weighted contrast enhanced GRE sequences
ultrafast GRE sequences

Flip Angle and Ernst Angle
In GE sequences, the choice of flip angle (α) is important for achieving T1-weighted images. GE sequences generally use small flip angles (< 90°) and very short TRs (typically 150 ms) The diagram shows that the optimal flip angle depends on the T1 value of the tissue being imaged. A short T1 results in a larger optimal flip angle. The dotted line represents the best contrast-to-noise ratio for marrow, cartilage and bone for a TR of 100 ms.

For each value of T1, there is an optimum flip angle that will give the most signal from a sequence where repeated RF excitations are made. This is known as the Ernst Angle and is given by:
αErnst = cos-1[exp(-TR/T1)]

Choice of Flip Angle Determines Optimum Tissue Contrast 2

 

 
Balanced Sequence

This family of sequences uses a balanced gradient waveform. This waveform will act on any stationary spin on resonance between 2 consecutive RF pulses and return it to the same phase it had before the gradients were applied. A balanced sequence starts out with a RF pulse of 90° or less and the spins in the steady state. Prior to the next TR in the slice encoding, the phase encoding and the frequency encoding direction, gradients are balanced so their net value is zero. Now the spins are prepared to accept the next RF pulse, and their corresponding signal can become part of the new transverse magnetization. If the balanced gradients maintain the longitudinal and transverse magnetization, the result is that both T1 and T2 contrast are represented in the image.
This pulse sequence produces images with increased signal from fluid (like T2 weighted sequences), along with retaining T1 weighted tissue contrast. Balanced sequences are particularly useful in cardiac MRI. Because this form of sequence is extremely dependent on field homogeneity, it is essential to run a shimming prior the acquisition.
Usually the gray and white matter contrast is poor, making this type of sequence unsuited for brain MRI. Modifications like ramping up and down the flip angles can increase signal to noise ratio and contrast of brain tissues (suggested under the name COSMIC - Coherent Oscillatory State acquisition for the Manipulation of Image Contrast).
These sequences include e.g. Balanced Fast Field Echo (bFFE), Balanced Turbo Field Echo (bTFE), Fast Imaging with Steady Precession (TrueFISP, sometimes short TRUFI), Completely Balanced Steady State (CBASS) and Balanced SARGE (BASG).

Balanced Fast Field Echo
(bFFE) A FFE sequence using a balanced gradient waveform. A balanced sequence starts out with a RF pulse of 90° or less and the spins in the steady state. Before the next TR in the slice phase and frequency encoding, gradients are balanced so their net value is zero. Now the spins are prepared to accept the next RF pulse, and their corresponding signal can become part of the new transverse magnetization. Since the balanced gradients maintain the transverse and longitudinal magnetization, the result is, that both T1 and T2 contrast are represented in the image. This pulse sequence produces images with increased signal from fluid, along with retaining T1 weighted tissue contrast. Because this form of sequence is extremely dependent on field homogeneity, it is essential to run a shimming prior the acquisition. A fully balanced (refocused) sequence would yield higher signal, especially for tissues with long T2 relaxation times.

Balanced SARGE
(BASG) The spoiled steady state acquisition rewinded gradient echo sequence with balanced waveform.

Balanced Turbo Field Echo
(BTFE) A gradient echo pulse sequence with a balanced gradient waveform and data acquisition after an initial preparation pulse for contrast enhancement.

Fast Imaging with Steady Precession - FISP - Rewound GE - GRASS
(TrueFISP) True fast imaging with steady state precession is a coherent technique that uses a fully balanced gradient waveform. The image contrast with TrueFISP is determined by T2*//T1 properties and mostly depending on TR. The speed and relative motion insensitivity of acquisition help to make the technique reliable, even in patients who have difficulty with holding their breath.
Recent advances in gradient hardware have led to a decreased minimum TR. This combined with improved field shimming capabilities and signal to noise ratio, has allowed TrueFISP imaging to become practical for whole-body applications. There's mostly T2* weighting. With the used ultrashort TR-times T1 weighting is almost impossible. One such application is cardiac cine MR with high myocardium-blood contrast. Spatial and temporal resolution can be substantially improved with this technique, but contrast on the basis of the ratio of T2* to T1 is not sufficiently high in soft tissues. By providing T1 contrast, TrueFISP could then document the enhancement effects of T1 shortening contrast agents. These properties are useful for the anatomical delineation of brain tumors and normal structures. With an increase in SNR ratio with minimum TR, TrueFISP could also depict the enhancement effect in myoma uteri. True FSIP is a technique that is well suited for cardiac MR imaging. The imaging time is shorter and the contrast between the blood and myocardium is higher than that of FLASH.

 
Coherent Gradient Echo

Coherent gradient echo sequences can measure the free induction decay (FID), generated just after each excitation pulse or the echo formed prior to the next pulse. Coherent gradient echo sequences are very sensitive to magnetic field inhomogeneity. An alternative to spoiling is to incorporate residual transverse magnetization directly into the longitudinal steady state. These GRE sequences use a refocusing gradient in the phase encoding direction during the end module to maximize remaining transverse (xy) magnetization at the time when the next excitation is due, while the other two gradients are, in any case, balanced.
When the next excitation pulse is sent into the system with an opposed phase, it tilts the magnetization in the -a direction. As a result the z-magnetization is again partly tilted into the xy-plane, while the remaining xy-magnetization is tilted partly into the z-direction.
A fully refocused sequence with a properly selected and uniform f would yield higher signal, especially for tissues with long T2 relaxation times (high water content) so it is used in angiographic, myelographic or arthrographic examinations and is used for T2* weighting. The repetition time for this sequence has to be short. With short TR, coherent GE is also useable for breath hold and 3D technique. If the repetition time is about 200 msec there's no difference between spoiled or unspoiled GE. T1 weighting is better with spoiled techniques.
The common types include GRASS, FISP, FAST, and FFE.
The T2* component decreases with long TR and short TE. The T1 time is controlled by flip angle. The common TR is less than 50 ms and the common TE less than 15 ms
Other types have stronger T2 dependence but lower SNR. They include SSFP, CE-FAST, PSIF, and CE-FFE-T2.
Examples of fully refocused FID sequences are TrueFISP, bFFE and bTFE.

Gradient Field Echo with Contrast
(GFEC) A contrast enhanced gradient echo sequence.

Inversion Recovery Fast Gradient Recalled Acquisition in the Steady State
(IR FGR) A gradient echo sequence with an inversion pulse.

Fast Field Echo
(FFE) An echo signal generated from a FID by means of a bipolar switched magnetic gradient. The preparation module of the pulse sequence consists of an excitation pulse. The magnetization tilts by a flip angle between 0° and 90°.

Fast Imaging with Steady State Precession
(FISP) A fast imaging sequence, which attempts to combine the signals observed separately in the FADE sequence, generally sensitive about magnetic susceptibility artifacts and imperfections in the gradient waveforms. Confusingly now often used to refer to a refocused FLASH type sequence.
This sequence is very similar to FLASH, except that the spoiler pulse is eliminated. As a result, any transverse magnetization still present at the time of the next RF pulse is incorporated into the steady state. FISP uses a RF pulse that alternates in sign. Because there is still some remaining transverse magnetization at the time of the RF pulse, a RF pulse of a degree flips the spins less than a degree from the longitudinal axis. With small flip angles, very little longitudinal magnetization is lost and the image contrast becomes almost independent of T1. Using a very short TE (with TR 20-50 ms, flip angle 30-45°) eliminates T2* effects, so that the images become proton density weighted. As the flip angle is increased, the contrast becomes increasingly dependent on T1 and T2*. It is in the domain of large flip angles and short TR that FISP exhibits vastly different contrast to FLASH type sequences. Used for T1 orthopedic imaging, 3D MPR, cardiography and angiography.

Fourier Acquired Steady State
(FAST) A gradient echo sequence with steady state free precession.

Reverse Fast Imaging with Steady State Precession
(PSIF) A heavily T2* weighted contrast enhanced gradient echo (mirrored FISP) technique. Because TE is relatively long, there are much flow artifacts and less signal to noise. In normal gradient echo techniques a FID-signal results after the RF pulses. This FID is rephased very fast and just before the next FID follows a spin echo signal. The SE is spoiled in FLASH sequences, but with PSIF sequences, only the SE is measured, not the FID.

SHORT Repetition Technique Based on Free Induction Decay
(F-SHORT) A gradient echo sequence.

Steady State Free Precession Sequence
(SFP or SSFP) Steady state free precession is any field or gradient echo sequence where the TR is shorter than the T1 and T2 times of the tissue.
The flip angle and the TR maintain the steady state. The flip angle should be 60-90° if the TR is 100 ms, if the TR is less than 100 ms, than the choice of the flip angle for steady state is 45-60°. The T1 weighting is controlled by TR and flip, the T2 weighting increases with the TE. Common TR is between 20 - 50 msec.

 
Driven Equilibrium

In fast imaging sequences driven equilibrium sensitizes the sequence to variations in T2. This MRI technique turns transverse magnetization Mxy to the longitudinal axis using a pulse rather than waiting for T1 relaxation.
The first two pulses form a spin echo and, at the peak of the echo, a second 90° pulse returns the magnetization to the z-axis in preparation for a fresh sequence. In the absence of T2 relaxation, then all the magnetization can be returned to the z-axis. Otherwise, T2 signal loss during the sequence will reduce the final z-magnetization.
The advantage of this sequence type is, that both longitudinal and also transverse magnetization are back to equilibrium in a shorter amount of time. Therefore, contrast and signal can be increased while using a shorter TR. This pulse type can be applied to other sequences like FSE, GE or IR.
Sequences with driven equilibrium:
Driven Equilibrium Fast Gradient Recalled acquisition in the steady state - DE FGR,
Driven Equilibrium Fourier Transformation - DEFT,
Driven Equilibrium magnetization preparation - DE prep,
Driven Equilibrium Fast Spin Echo - DE FSE.

Driven Equilibrium Fast Gradient Recalled Acquisition in the Steady State
(DE FGR) A gradient echo sequence using a pulse, which sensitizes the sequence to variations in T2, rather than waiting for T1 relaxation.

Driven Equilibrium Fast Spin Echo
(DE FSE) A fast spin echo sequence with application of a pulse, which sensitizes the sequence to variations in T2.

Driven Equilibrium Fourier Transformation
(DEFT) This sequence enhances fluid signal by using a 'tip-up' pulse following a spin echo train.

Driven Equilibrium Magnetization Preparation
(DE prep)

 
Refocused Gradient Echo Sequence

Refocused GRE sequences use a refocusing gradient in the phase encoding direction during the end module to maximize (refocus) remaining xy- (transverse) magnetization at the time when the next excitation is due, while the other two gradients are, in any case, balanced.
When the next excitation pulse is sent into the system with an opposed phase, it tilts the magnetization in the a direction. As a result the z-magnetization is again partly tilted into the xy-plane, while the remaining xy-magnetization is tilted partly into the z-direction.
Companies use different acronyms to describe certain techniques.
Different terms for these gradient echo pulse sequences:
R-GRE Refocused Gradient Echo,
FAST Fourier Acquired Steady State,
FFE Fast Field echo,
FISP Fast Imaging with Steady State Precession,
F-SHORT SHORT Repetition Technique Based on Free Induction Decay,
GFEC Gradient Field Echo with Contrast,
GRASS Gradient Recalled Acquisition in Steady State,
ROAST Resonant Offset Averaging in the Steady State,
SSFP Steady State Free Precession.
STERF Steady State Technique with Refocused FID
In this context, 'contrast' refers to the pulse sequence, it does not mean enhancement with a contrast agent.

Complex Rephasing Integrated with Surface Probes
(CRISP) A specific pulse sequence, wherein the application of strategic gradient pulses can compensate for the objectionable spin phase effects of flow motion.

Dual Fast Field Echo
(Dual/FFE) A FFE technique with simultaneously acquired in and out of phase gradient echoes.

Dual Echo Fast Gradient Echo
(DE FGRE, Dual/FFE, DE FFE) Simultaneously acquired in and out of phase TE gradient echo images. To quantitatively measure the signal intensity differences between out of phase and in phase images the parameters should be the same except for the TE.
The chemical shift artifact appearing on the out-of-phase image allows for the detection of lipids in the liver or adrenal gland, such as diffuse fatty infiltration, focal fatty infiltration, focal fatty sparing, benign adrenocortical masses and intracellular lipids within a hepatocellar neoplasm, where spin echo and fat suppression techniques are not as sensitive. Specific pathologies that have been reported include liver lipoma, angiomyolipoma, myelolipoma, metastatic liposarcoma, teratocarcinoma, melanoma, haemorrhagic neoplasm and metastatic choriocarcinoma.

Fast Gradient Recalled Echo
(FGRE) The fast gradient recalled echo sequence belong to the refocused gradient echo sequences.

Fast Field Echo
(FFE) An echo signal generated from a FID by means of a bipolar switched magnetic gradient. The preparation module of the pulse sequence consists of an excitation pulse. The magnetization tilts by a flip angle between 0° and 90°.

Fast Imaging with Steady State Precession
(FISP) A fast imaging sequence, which attempts to combine the signals observed separately in the FADE sequence, generally sensitive about magnetic susceptibility artifacts and imperfections in the gradient waveforms. Confusingly now often used to refer to a refocused FLASH type sequence.
This sequence is very similar to FLASH, except that the spoiler pulse is eliminated. As a result, any transverse magnetization still present at the time of the next RF pulse is incorporated into the steady state. FISP uses a RF pulse that alternates in sign. Because there is still some remaining transverse magnetization at the time of the RF pulse, a RF pulse of a degree flips the spins less than a degree from the longitudinal axis. With small flip angles, very little longitudinal magnetization is lost and the image contrast becomes almost independent of T1. Using a very short TE (with TR 20-50 ms, flip angle 30-45°) eliminates T2* effects, so that the images become proton density weighted. As the flip angle is increased, the contrast becomes increasingly dependent on T1 and T2*. It is in the domain of large flip angles and short TR that FISP exhibits vastly different contrast to FLASH type sequences. Used for T1 orthopedic imaging, 3D MPR, cardiography and angiography.

Fast Low Angle Recalled Echoes
(FLARE) 'Fast Low Angle Recalled Echoes' is a gradient echo sequence, typically with low flip angles and refocused gradient echo.

Fourier Acquired Steady State
(FAST) A gradient echo sequence with steady state free precession.

Gradient Field Echo with Contrast
(GFEC) A contrast enhanced gradient echo sequence.

Inversion Recovery Fast Gradient Recalled Acquisition in the Steady State
(IR FGR) A gradient echo sequence with an inversion pulse.

Resonant Offset Averaging in the Steady State
(ROAST) A gradient echo sequence.

SHORT Repetition Technique Based on Free Induction Decay
(F-SHORT) A gradient echo sequence.

Steady State Free Precession Sequence
(SFP or SSFP) Steady state free precession is any field or gradient echo sequence where the TR is shorter than the T1 and T2 times of the tissue.
The flip angle and the TR maintain the steady state. The flip angle should be 60-90° if the TR is 100 ms, if the TR is less than 100 ms, than the choice of the flip angle for steady state is 45-60°. The T1 weighting is controlled by TR and flip, the T2 weighting increases with the TE. Common TR is between 20 - 50 msec.

Steady State Technique with Refocused FID
(STERF) A gradient echo sequence

 
Spoiled Gradient Echo Sequence - FLASH ( Fast Low Angle Shot )

Spoiled gradient echo sequences use a spoiler gradient on the slice select axis during the end module to destroy any remaining transverse magnetization after the readout gradient, which is the case for short repetition times.
As a result, only z-magnetization remains during a subsequent excitation. This types of sequences use semi-random changes in the phase of radio frequency pulses to produce a spatially independent phase shift.
Companies use different acronyms to describe certain techniques.
Different terms for these gradient echo pulse sequences:
CE-FFE-T1 Contrast Enhanced Fast Field Echo with T1 Weighting,
GFE Gradient Field Echo,
FLASH Fast Low Angle Shot,
PS Partial Saturation,
RF spoiled FAST RF Spoiled Fourier Acquired Steady State Technique,
RSSARGE Radio Frequency Spoiled Steady State Acquisition Rewound Gradient Echo
S-GRE Spoiled Gradient Echo,
SHORT Short Repetition Techniques,
SPGR Spoiled Gradient Recalled (spoiled GRASS),
STAGE T1W T1 weighted Small Tip Angle Gradient Echo,
T1-FAST T1 weighted Fourier Acquired Steady State Technique,
T1-FFE T1 weighted Fast Field Echo.

 


Coherent and Incoherent Signal formation in the Steady State resulting form a Rapid and Regular Train of RF Pulses

The word “spoiling” refers to the elimination of the steady-state transverse magnetization. There are various ways of doing this, such as by applying RF spoiling, applying variable gradient spoilers and by lengthening TR. By eliminating the steady state component, only the longitudinal component affects the signal in the FLASH technique. This technique lends itself to reduced T2* weighting and increased T1 weighting. This is true provided that α is also large. When α is small, the T1 recovery curves play a minor role and proton density (PD) weighting is increased.

 

Incoherent Gradient Echo (Gradient spoiled)

The incoherent gradient echo (gradient spoiled) type of sequence uses a continuous shifting of the RF pulse to spoil the remaining transverse magnetization. The transverse magnetization is destroyed by a magnetic field gradient. This results in a T1 weighted image. Spoiling can be accomplished by RF or a gradient.
Gradient spoiling occurs after each echo by using strong gradients in the slice-select direction after the frequency encoding and before the next RF pulse. Because spins in different locations in the magnet thereby experience a variety of magnetic field strengths, they will precess at differing frequencies; as a consequence they will quickly become dephased. Magnetic field gradients are not very efficient at spoiling the transverse steady state. To be effective, the spins must be forced to precess far enough to become phased randomly with respect to the RF excitation pulse. In clinical MRI machines, the field gradients are set up in such a way that they increase and decrease relative to the center of the magnet; the magnetic field at the magnet 'isocenter' does not change.
The T1 weighting increases with the flip angle and the T2* weighting increases with echo time (TE). Typical repetition time (TR) are 30-500 ms and TE less than 15 ms.

Fast Low Angle Shot
(FLASH) A fast sequence producing signals called gradient echo with low flip angles. FLASH sequences are modifications, which incorporate or remove the effects of transverse coherence respectively.
FLASH uses a semi-random spoiler gradient after each echo to spoil the steady state (to destroy any remaining transverse magnetization) by causing a spatially dependent phase shift. The transverse steady state is spoiled but the longitudinal steady state depends on the T1 values and the flip angle. Extremely short TR times are possible, as a result the sequence provides a mechanism for gaining extremely high T1 contrast by imaging with TR times as brief as 20 to 30 msec while retaining reasonable signal levels. It is important to keep the TE as short as possible to suppress susceptibility artifacts.
The T1 contrast depends on the TR as well as on flip angle, with short TE.
Small flip angles and short TR results in proton density, and long TR in T2* weighting.
With large flip angles and short TR result T1 weighted images.

TR and flip angle adjustment:
TR 3000 ms, Flip Angle 90°
TR 1500 ms, Flip Angle 45°
TR 700 ms, Flip Angle 25°
TR 125 ms, Flip Angle 10°
The apparent ability to trade TR against flip angle for purposes of contrast and the variation in SNR as the scan time (TR) is reduced.

Multiplanar Gradient Recalled Acquisition in the Steady State
(MPGR) Multiplanar gradient recalled acquisition in the steady state is a term for a fast gradient echo sequence with slice selective RF pulses.

Short Repetition Techniques
(SHORT) Gradient echo sequences.

Small Tip Angle Gradient Echo
(STAGE) A gradient echo sequence with low flip angles and spoiled gradients.

 

Incoherent Gradient Echo (RF spoiled)

A gradient echo is generated by using a pair of bipolar gradient pulses. The gradient field is negatively pulsed, causing the spins of the xy-magnetization to dephase. A second gradient pulse is applied with the opposite polarity. During the pulsing, the spins that dephased begin to rephase and generate a gradient echo.
Spoiling can be accomplished by RF or a gradient. The incoherent RF spoiled type of a gradient echo sequence use a continuous shifting of the RF pulse to spoil the residual transverse magnetization. The phase of the RF excitation and receiver channel are varied pseudo randomly with each excitation cycle to prevent the xy magnetization from achieving steady state. T2* does not dominate image contrast, so T1 and PD weighting is practical. This method is effective and can be used to achieve a shorter TR, due to a lack of additional gradients. Spoiling eliminates the effect of the remaining xy-magnetization and leads to steady state longitudinal magnetization. These sequences can be used for breath hold, dynamic imaging and in cine and volume acquisitions.

Gradient Field Echo

Radio Frequency Spoiled Steady State Acquisition Rewound Gradient Echo
(RSSARGE) A sequence with spoiled gradient echoes.

RF Spoiled Fourier Acquired Steady State Technique
(RF-FAST / RF spoiled FAST) A gradient echo sequence.

Small Tip Angle Gradient Echo T1 Weighted
(STAGE T1W) A RF spoiled T1 weighted gradient echo sequence.

Spoiled Gradient Recalled
(SPGR) The SPGR pulse sequence is similar to the spoiled GRASS sequence. The spoiled gradient recalled (SPGR) acquisition in steady state uses semi-random changes in the phase of the radio frequency (RF) pulses to produce a spatially independent phase shift.

 

Steady State Free Precession - SSFP - PSIF

( PSIF SFP or SSFP) Steady state free precession is any field or gradient echo sequence in which a non-zero steady state develops for both components of magnetization (transverse and longitudinal) and also a condition where the TR is shorter than the T1 and T2 times of the tissue. If the RF pulses are close enough together, the MR signal will never completely decay, implying that the spins in the transverse plane never completely dephase. The flip angle and the TR maintain the steady state. The flip angle should be 60-90° if the TR is 100 ms, if the TR is less than 100 ms, then the flip angle for steady state should be 45-60°.
Steady state free precession is also a method of MR excitation in which strings of RF pulses are applied rapidly and repeatedly with interpulse intervals short compared to both T1 and T2. Alternating the phases of the RF pulses by 180° can be useful. The signal reforms as an echo immediately before each RF pulse;; immediately after the RF pulse there is additional signal from the FID produced by the pulse.
The strength of the FID will depend on the time between pulses (TR), the tissue and the flip angle of the pulse; the strength of the echo will additionally depend on the T2 of the tissue. With the use of appropriate dephasing gradients, the signal can be observed as a frequency-encoded gradient echo either shortly before the RF pulse or after it; the signal immediately before the RF pulse will be more highly T2 weighted. The signal immediately after the RF pulse (in a rapid series of RF pulses) will depend on T2 as well as T1, unless measures are taken to destroy signal refocusing and prevent the development of steady state free precession.
To avoid setting up a state of SSFP when using rapidly repeated excitation RF pulses, it may be necessary to spoil the phase coherence between excitations, e.g. with varying phase shifts or timing of the exciting RF pulses or varying spoiler gradient pulses between the excitations.
Steady state free precession imaging methods are quite sensitive to the resonant frequency of the material. Fluctuating equilibrium MR (see also FIESTA and DRIVE) and linear combination SSFP actually use this sensitivity for fat suppression. Fat saturated SSFP (FS-SSFP) use a more complex fat suppression scheme than FEMR or LCSSFP, but has a 40% lower scan time.
A new family of steady state free precession sequences use a balanced gradient, a gradient waveform, which will act on any stationary spin on resonance between 2 consecutive RF pulses and return it to the same phase it had before the gradients were applied.
This sequences include, e.g. Balanced Fast Field Echo - bFFE, Balanced Turbo Field Echo - bTFE, Fast Imaging with Steady Precession - TrueFISP and Balanced SARGE - BASG. See also FIESTA

Completely Balanced Steady State
(CBASS) A gradient echo sequence with balanced waveform.

Contrast Enhanced FAST
(CE-FAST) In this technique, the MR signal is sampled immediately prior to each RF pulse. Because the signal is formed by a true spin echo, its contrast is predominantly T2-, rather than T2*-based and is less sensitive to artifacts and signal losses related to field non-uniformity and susceptibility variation. While the signal to noise ratio is limited, the CE-FAST method has the advantage of good contrast.

Contrast Enhanced Fast Field Echo with T2 Star Weighting
(CE-FFE-T2) A T2* weighted gradient echo sequence.

Fast Imaging with Steady Precession
(TrueFISP) True fast imaging with steady state precession is a coherent technique that uses a fully balanced gradient waveform. The image contrast with TrueFISP is determined by T2*//T1 properties and mostly depending on TR. The speed and relative motion insensitivity of acquisition help to make the technique reliable, even in patients who have difficulty with holding their breath.
Recent advances in gradient hardware have led to a decreased minimum TR. This combined with improved field shimming capabilities and signal to noise ratio, has allowed TrueFISP imaging to become practical for whole-body applications. There's mostly T2* weighting. With the used ultrashort TR-times T1 weighting is almost impossible. One such application is cardiac cine MR with high myocardium-blood contrast. Spatial and temporal resolution can be substantially improved with this technique, but contrast on the basis of the ratio of T2* to T1 is not sufficiently high in soft tissues. By providing T1 contrast, TrueFISP could then document the enhancement effects of T1 shortening contrast agents. These properties are useful for the anatomical delineation of brain tumors and normal structures. With an increase in SNR ratio with minimum TR, TrueFISP could also depict the enhancement effect in myoma uteri. True FSIP is a technique that is well suited for cardiac MR imaging. The imaging time is shorter and the contrast between the blood and myocardium is higher than that of FLASH.

Fourier Acquired Steady State
(FAST) A gradient echo sequence with steady state free precession.

Driven Equilibrium Fast Gradient Recalled Acquisition in the Steady State
(DE FGR) A gradient echo sequence using a pulse, which sensitizes the sequence to variations in T2, rather than waiting for T1 relaxation.

Reverse Fast Imaging with Steady State Precession
(PSIF) A heavily T2* weighted contrast enhanced gradient echo (mirrored FISP) technique. Because TE is relatively long, there are much flow artifacts and less signal to noise. In normal gradient echo techniques a FID-signal results after the RF pulses. This FID is rephased very fast and just before the next FID follows a spin echo signal. The SE is spoiled in FLASH sequences, but with PSIF sequences, only the SE is measured, not the FID.

Steady State Gradient Echo with Spin Echo Sampling
(E-SHORT) A gradient echo sequence in which a non-zero steady state develops for transverse and longitudinal magnetization. The TR is shorter than the T1 and T2 times of the tissue.

Steady State Technique with Refocused FID
(STERF) A gradient echo sequence.

 

Ultrafast Gradient Echo Sequence

 

In simple ultrafast GRE imaging, TR and TE are so short, that tissues have a poor imaging signal and — more importantly — poor contrast except when contrast media enhanced (contrast enhanced angiography). Therefore, the magnetization is 'prepared' during the preparation module, most frequently by an initial 180° inversion pulse.
In the pulse sequence timing diagram, the basic ultrafast gradient echo sequence is illustrated. The 180° inversion pulse is executed one time (to the left of the vertical line), the right side represents the data collection period and is often repeated depending on the acquisition parameters.
See also Pulse Sequence Timing Diagram, there you will find a description of the components.
Ultrafast GRE sequences have a short TR,TE, a low flip angle and TR is so short that image acquisition lasts less than 1 second and typically less than 500 ms. Common TR: 3-5 msec, TE: 2 msec, and the flip angle is about 5°. Such sequences are often labeled with the prefix 'Turbo' like TurboFLASH, TurboFFE and TurboGRASS.
This allows one to center the subsequent ultrafast GRE data acquisition around the inversion time TI, where one of the tissues of interest has very little signal as its z-magnetization is passing through zero.
Unlike a standard inversion recovery (IR) sequence, all lines or a substantial segment of k-space image lines are acquired after a single inversion pulse, which can then together be considered as readout module. The readout module may use a variable flip angle approach, or the data acquisition may be divided into multiple segments (shots). The latter is useful particularly in cardiac imaging where acquiring all lines in a single segment may take too long relative to the cardiac cycle to provide adequate temporal resolution.
If multiple lines are acquired after a single pulse, the pulse sequence is a type of gradient echo echo planar imaging (EPI) pulse sequence.
 

   

 

Echo Planar Imaging (EPI).
(EPI) Echo planar imaging is one of the early magnetic resonance imaging sequences (also known as Intascan), used in applications like diffusion, perfusion, and functional magnetic resonance imaging. Other sequences acquire one k-space line at each phase encoding step. When the echo planar imaging acquisition strategy is used, the complete image is formed from a single data sample (all k-space lines are measured in one repetition time) of a gradient echo or spin echo sequence (see single shot technique) with an acquisition time of about 20 to 100 ms. The pulse sequence timing diagram illustrates an echo planar imaging sequence from spin echo type with eight echo train pulses. (See also Pulse Sequence Timing Diagram, for a description of the components.)
In case of a gradient echo based EPI sequence the initial part is very similar to a standard gradient echo sequence. By periodically fast reversing the readout or frequency encoding gradient, a train of echoes is generated.
EPI requires higher performance from the MRI scanner like much larger gradient amplitudes. The scan time is dependent on the spatial resolution required, the strength of the applied gradient fields and the time the machine needs to ramp the gradients.
In EPI, there is water fat shift in the phase encoding direction due to phase accumulations. To minimize water fat shift (WFS) in the phase direction fat suppression and a wide bandwidth (BW) are selected. On a typical EPI sequence, there is virtually no time at all for the flat top of the gradient waveform. The problem is solved by "ramp sampling" through most of the rise and fall time to improve image resolution.
The benefits of the fast imaging time are not without cost. EPI is relatively demanding on the scanner hardware, in particular on gradient strengths, gradient switching times, and receiver bandwidth. In addition, EPI is extremely sensitive to image artifacts and distortions. For More information about EPI click here!

 

Fast Spoiled Gradient Echo
(FSPGR) A sequence similar to TurboFLASH or Turbo Field Echo.

Fourier Acquired Steady State
(FAST) A gradient echo sequence with steady state free precession.

Gradient and Spin Echo
(GRASE) A hybrid sequence with a combination of gradient and spin echo sequences. If multiple image lines are obtained during a single echo, the imaging pulse sequence type is a GRASE sequence.

Magnetization Prepared Rapid Gradient Echo
(MP-GRE / MPRAGE / MP-RAGE) A fast 3D gradient echo pulse sequence using a magnetization preparation pulse like TurboFLASH. Only one segment or partition of a 3D data record is obtained per inversion preparation pulse. After the acquisition, for all rows a delay time (TD) is used to prevent saturation effects.
MPRAGE is designed for rapid acquisition with T1 weighted dominance. Fast gradient echoes are characterized by their rapid sampling time, high signal intensity and image contrast while approaching steady state (the echo is collected during the time when tissues are experiencing T1 relaxation). The rapid speed of the acquisition makes it an excellent alternative to breath-hold abdominal imaging, neuro, dynamic bolus, MR angiography and cardiac imaging.

Rapid Acquisition Matrix FAST
(RAM-FAST) A fast gradient echo pulse sequence using a magnetization preparation pulse

Rapid Scan
(RS) A very fast gradient echo sequence.

Short Minimum Angled Shot
(SMASH) A very fast gradient echo sequence.

Turbo Field Echo
(TFE) Turbo field echo is a gradient echo pulse sequence with data acquisition after an initial 180° (similar to IR) preparation pulse for contrast enhancement. The difference between a FFE and TFE other than the speed of the sequence is that the image is acquired while approaching steady state (the echoes are collected during the time in which the tissues are experiencing T1 relaxation).
The contrast is prepared one time, which means the contrast is changing while the echoes are collected and can be manipulated by selecting the type and timing of the prepulse. A delay time is given before the actual image acquistion. To achieve T1 contrast the 180° prepulse is followed by an operator selected delay time, that results in no signal from the targeted tissue. So when the echoes are acquired, no signal is present, additional RF spoiling is performed to optimize for T1 contrast. The delay chosen corresponds to when T1 relaxation reaches and suppresses T1 signal or optimizes the difference between tissues. Contrast for these sequences are enhanced when K-space is filled using a centric or low-high ordering. A TFE can be acquired with a 2D or 3D technique and with or without T1, T2 weighting.

Turbo Gradient Spin Echo
(TGSE / TurboGSE) A sequence with a combination of Gradient and Spin Echo Imaging. Additional gradient echoes are generated before and after each spin echo. The spin echoes are allocated to the center of the raw data matrix to give pure T2 contrast. The gradient echoes primarily determine the image resolution. If multiple image lines are obtained during a single echo, the imaging pulse sequence type is a TGSE pulse sequence. This sequence is very fast, fat is darker and more sensitive to susceptibility effects. Also called GRASE.

Turbo Gradient Recalled Acquisition in Steady State
(TurboGRASS) This GRASS-based sequence use an inversion pulse followed by a low flip angle and short TR gradient echo train.

Turbo Fast Low Angle Shot
(TurboFLASH) This FLASH-based sequence use an inversion pulse followed by a low flip angle and short TR gradient echo train. This gradient echo technique forms complete images in times short compared to T1. Images obtained in this way have very little intrinsic contrast, maintaining adequate signal requires that losses (and therefore contrast)

Volumetric Interpolated Breath Hold Examination
(VIBE) A T1 weighted 3D FLASH breath hold technique with fat selective prepulse.
Used for dynamic liver, pancreas, pelvis, thorax, orbita imaging and MR colonoscopy.

 
MR Angiography

(MRA) Magnetic resonance angiography is a medical imaging technique to visualize blood filled structures, including arteries, veins and the heart chambers. This MRI technique creates soft tissue contrast between blood vessels and surrounding tissues primarily created by flow, rather than displaying the vessel lumen. There are bright blood and black blood MRA techniques, named according to the appearance of the blood vessels. With this different MRA techniques both, the blood flow and the condition of the blood vessel walls can be seen. Flow effects in MRI can produce a range of artifacts. MRA takes advantage of these artifacts to create predictable image contrast due to the nature of flow.
Technical parameters of the MRA sequence greatly affect the sensitivity of the images to flow with different velocities or directions, turbulent flow and vessel size.
This are the three main types of MRA:
time of flight angiography (TOF)
phase contrast angiography (PCA)
contrast enhanced magnetic resonance angiography (CE-MRA)
All angiographic techniques differentially enhance vascular MR signal. The names of the bright blood techniques TOF and PCA reflect the physical properties of flowing blood that were exploited to make the vessels appear bright. Contrast enhanced magnetic resonance angiography creates the angiographic effect by using an intravenously administered MR contrast agent to selectively shorten the T1 of blood and thereby cause the vessels to appear bright on T1 weighted images.
MRA images optimally display areas of constant blood flow-velocity, but there are many situations where the flow within a voxel has non-uniform speed or direction. In a diseased vessel these patterns are even more complex. Similar loss of streamline flow occurs at all vessel junctions and stenoses, and in regions of mural thrombosis. It results in a loss of signal, due to the loss of phase coherence between spins in the voxel.
This signal loss, usually only noticeable distal to a stenosis, used to be an obvious characteristic of MRA images. It is minimized by using small voxels and the shortest possible TE. Signal loss from disorganized flow is most noticeable in TOF imaging but also affects the PCA images.
Indications to perform a magnetic resonance angiography (MRA):
Detection of aneurysms and dissections
Evaluation of the vessel anatomy, including variants
Blockage by a blood clot or stenosis of the blood vessel caused by plaques (the buildup of fat and calcium deposits)
Conventional angiography or computerized tomography angiography (CT angiography) may be needed after MRA if a problem (such as an aneurysm) is present or if surgery is being considered.

Black Blood MRA
With this magnetic resonance angiography technique flowing blood appears dark.
MR black blood techniques have been developed for cardiovascular imaging to improve segmentation of myocardium from the blood pool. Black blood MRA techniques decrease the signal from blood with reference to the myocardium and make it easier to perform cardiac chamber segmentation.
ECG gated spin echo sequences with presaturation pulses for magnetization preparation will show strong intravascular signal loss due to flow effects when appropriate imaging conditions including spatial presaturation are used. The sequence use the flow void effect as blood passes rapidly through the selected slice.
For dark blood preparation, a pair of nonselective and selective 180° inversion pulses are used, followed by a long inversion time to null signal from inflowing blood. A second selective inversion pulse can also be applied with short inversion time to null the fat signal. These in cardiac imaging used black blood techniques are referred to as double inversion recovery T1 measurement turbo spin echo or fast spin echo, and double-inversion recovery STIR.

Contrast Enhanced Magnetic Resonance Angiography
(CE MRA) Contrast enhanced MR angiography is based on the T1 values of blood, the surrounding tissue, and paramagnetic contrast agent.
T1-shortening contrast agents reduces the T1 value of the blood (approximately to 50 msec, shorter than that of the surrounding tissues) and allow the visualization of blood vessels, as the images are no longer dependent primarily on the inflow effect of the blood. Contrast enhanced MRA is performed with a short TR to have low signal (due to the longer T1) from the stationary tissue, short scan time to facilitate breath hold imaging, short TE to minimize T2* effects and a bolus injection of a suffizient dose of a gadolinium chelate.
Images of the region of interest are performed with 3D spoiled gradient echo pulse sequences. The enhancement is maximized by timing the contrast agent injection such that the period of maximum arterial concentration corresponds to the k-space acquisition. Different techniques are used to ensure optimal contrast of the arteries e.g., bolus timing, automatic bolus detection, bolus tracking, care bolus. A high resolution with near isotropic voxels and minimal pulsatility and misregistration artifacts should be striven for. The postprocessing with the maximum intensity projection (MIP) enables different views of the 3D data set.
Unlike conventional MRA techniques based on velocity dependent inflow or phase shift techniques, contrast enhanced MRA exploits the gadolinium induced T1-shortening effects. CE MRA reduces or eliminates most of the artifacts of time of flight angiography or phase contrast angiography. Advantages are the possibility of inplane imaging of the blood vessels, which allows to examine large parts in a short time and high resolution scans in one breath hold. CE MRA has found a wide acceptance in the clinical routine, caused by the advantages:
3D MRA can be acquired in any plane, which means that greater vessel coverage can be obtained at high resolution with fewer slices (aorta, peripheral vessels);
the possibility to perform a time resolved examination (similarly to conventional angiography);
no use of ionizing radiation; paramagnetic agents have a beneficial safety.

Phase Contrast Angiography
(PCA) With this method images of the blood flow-velocity (or any other movement of tissue) are produced. The MRI signal contains both amplitude and phase information. The phase information can be used with subtraction of images with and without a velocity encoding gradient. The signal will be directly proportional to the velocity because of the relation between blood flow-velocity and signal intensity.
This is the strength of PCA, complete suppression of stationary tissue (no velocity - no signal), the direct velocity of flow is being imaged, while in TOF (Inflow) angiography, tissue with short T1 (fat or methaemoglobin) might be visualized.
The strength of the gradient determines the sensitivity to flow. It is set by setting the aliasing or encoding velocity (VENC). Unfortunately, phase sensitization can only be acquired along one axis at a time. Therefore, phase contrast angiographic techniques tend to be 4 times slower than TOF techniques with the same matrix.

Time of Flight Angiography
(TOF) The time of flight angiography is used for the imaging of vessels. Usually the sequence type is a gradient echo sequences with short TR, acquired with slices perpendicular to the direction of blood flow.
The source of diverse flow effects is the difference between the unsaturated and presaturated spins and creates a bright vascular image without the invasive use of contrast media. Flowing blood moves unsaturated spins from outside the slice into the imaging plane. These completely relaxed spins have full equilibrium magnetization and produce (when entering the imaging plane) a much higher signal than stationary spins if a gradient echo sequence is generated. This flow related enhancement is also referred to as entry slice phenomenon, or inflow enhancement.
Performing a presaturation slab on one side parallel to the slice can selectively destroy the MR signal from the in-flowing blood from this side of the slice. This allows the technique to be flow direction sensitive and to separate arteriograms or venograms. When the local magnetization of moving blood is selectively altered in a region, e.g. by selective excitation, it carries the altered magnetization with it when it moves, thus tagging the selected region for times on the order of the relaxation times.
For maximum flow signal, a complete new part of blood has to enter the slice every repetition (TR) period, which makes time of flight angiography sensitive to flow-velocity. The choice of TR and slice thickness should be appropriate to the expected flow-velocities because even small changes in slice thickness influences the performance of the TOF sequence. The use of sequential 2 dimensional Fourier transformation (2DFT) slices, 3DFT slabs, or multiple 3D slabs (chunks) are depending on the coverage required and the range of flow-velocities.
3D TOF MRA is routinely used for evaluating the Circle of Willis.
Sequences in Aera
  Matrix
64 128 256
Spin Echo min. TR [ms] 6.8 7.2 7.8
min. TE [ms] 3 3.5 4
Inversion Recovery min. TR [ms] 28 29 30
min. TE [ms] 3 3.5 4
min. TI [ms] 23 23 23
2D GRE min. TR [ms] 0.68 0.92 1.14
min. TE [ms] 0.28 0.28 0.28
3D GRE min. TR [ms] 0.68 0.92 1.14
min. TE [ms] 0.28 0.28 0.28
TrueFISP min. TR [ms] 1.9 2.1 2.76
min. TE [ms] 0.88 0.89 1.16
TSE (HASTE) min. Echo Spacing [ms] 2.08 2.38 2.9
min. TR [ms] 6.8 7.2 7.8
min. TE [ms] 3 3.5 4
max. Turbo Factor = 512
Turbo GSE min. Echo Spacing [ms] 0.8 0.96 1.16
min. TR [ms] 6.8 7.2 7.8
min. TE [ms] 3 3.5 4
max. Turbo Factor 65 65 65
max. EPI Factor = 21
EPI (single-shot and multi-shot) min. Echo Spacing [ms] 0.38 0.55 0.9
min. TR [ms] 10 10 10
min. TE [ms] 2.1 2.4 2.9
min. Measurement time 15 19 30
max. EPI Factor = 256
Diffusion Imaging Max. b-value [s / mm2] 10 000 10 000 10 000
Min. TE [ms] with b = 1000 [s / mm2] 49 51 56
All matrices without interpolation. Combinations of the stated parameters are not always possible; 
some parameters may require optional application packages. These data are applicable for Aera
Sequences in Skyra
  Matrix
64 128 256
Spin Echo min. TR [ms] 5.7 6.3 6.4
min. TE [ms] 3 3.3 3.5
Inversion Recovery min. TR [ms] 27 28 28
min. TE [ms] 3 3.3 3.5
min. TI [ms] 22 22 22
2D GRE min. TR [ms] 0.54 0.67 1
min. TE [ms] 0.22 0.22 0.22
3D GRE min. TR [ms] 0.54 0.67 1
min. TE [ms] 0.22 0.22 0.22
TrueFISP min. TR [ms] 2.03 2.22 2.7
min. TE [ms] 0.94 0.98 1.19
TSE (HASTE) min. Echo Spacing [ms] 1.92 2.12 2.5
min. TR [ms] 5.7 6.3 6.4
min. TE [ms] 3 3.3 3.5
max. Turbo Factor = 512
Turbo GSE min. Echo Spacing [ms] 0.7 0.82 0.86
min. TR [ms] 5.7 6.3 6.4
min. TE [ms] 3 3.5 3.5
max. Turbo Factor 65 65 65
max. EPI Factor = 21
EPI (single-shot and multi-shot) min. Echo Spacing [ms] 0.28 0.4 0.66
min. TR [ms] 10 10 10
min. TE [ms] 2.1 2.2 2.7
min. Measurement time 12 17 25
max. EPI Factor = 256
Diffusion Imaging Max. b-value [s / mm2] 10 000 10 000 10 000
Min. TE [ms] with b = 1000 [s / mm2] 42 43 47
All matrices without interpolation. Combinations of the stated parameters are not always possible; 
some parameters may require optional application packages. These data are applicable for Skyra
   

 

 


 


  


This is a neurosurgical site dedicated to intraoperative monitoring to catch in time the early signs of possible functional complications before they evolve to morphologic ones.



Complications in neurosurgery

So as to have a digital data, the best ever made Inomed Highline ISIS system was put in service to provide documented information about the complications.

Directed by Prof. Munir Elias

Team in action.

Starting from July-2007 all the surgical activities of Prof. Munir Elias will be guided under the electrophysiologic control of ISIS- IOM



ISIS-IOM Inomed Highline

 

 

         
Home | MRI | BRAINSTEM | EEG | NCS/EMG | EVOKED POTENTIALS | MOTOR EVOKED POTENTIALS | D-WAVES
Copyright [2011] [CNS Clinic - Jordan - Munir Elias]. All rights reserved